Н Л П ( N L P ) :: Р Э Й К И :: Х О Л О Д И Н А М И К А С т у д и я л и ч н о г о р а з в и т и я
| ||
|
||
западное рэйки-1
РЭЙКИ. СТУПЕНЬ 1 западное рэйки-2
РЭЙКИ. СТУПЕНЬ 2
наш букварь
ХОЛОДИНАМИКА-1 ВСТРЕЧА С ПОТЕНЦИАЛОМ
практичное нлп
ИГРЫ НОВОГО КОДА нлп-практик-2
РЕЗОНАНСНОЕ ОБЩЕНИЕ нлп-практик-3
УПРАВЛЕНИЕ ЭМОЦИЯМИ нлп-практик-4
СБЫЧА МЕЧТ восточное рэйки-1
УСУИ РЭЙКИ РИОХО-1 | Освоение реальности
Физики против философов В апрельском номере журнала "Physics World" опубликована статья американского философа науки Роберта Криса (Robert Crease) с анализом воззрений ученых-физиков на окружающую реальность. Философа интересовали сугубо практические суждения этой категории людей о том, что в этом мире "реально", а что нет. Базой для умозаключений послужил опросный лист с нехитрыми на первый взгляд вопросами: например, "полагаете ли вы реальными Землю, камни, галлюцинации, эмоции, цвета, длину волны, вязкость, кинетическую энергию, гравитационную постоянную, электрон, атом по Бору, массу, действительные числа, мнимые числа…" В общей сложности задавалось около трех десятков вопросов, на которые ответили больше полутысячи физиков. Одни, как на блиц-турнире по шахматам, быстренько расставили галочки в клетках ("да", "нет", "не уверен"). У других наивные, казалось бы, вопросы вызвали замешательство. Третьи пришли в ярость и вернули лист нетронутым, не преминув отметить, что философы никогда не умели ставить вопросы правильно… (Любопытно, что коперникову модель Солнечной системы назвали "реальной" и "нереальной" равные доли опрошенных - по 43%. Поровну разделились мнения и о реальности и нереальности волновой функции квантовой системы. Галлюцинации, кстати, считают реальными 40%, эмоции - 49%). Вопросы и в самом деле были подобраны "провокационные", чтобы ответы на достаточно глубоком уровне отразили, каким образом профессиональные знания респондента соотносятся с его представлениями о реальности. Философы славятся своей любовью разложить все знания по полочкам и ящичкам, снабженным бирками. Каждой разновидности концептуальных воззрений на жизнь дается наименование: "реализм", "антиреализм", "операционализм", "конструктивизм", "герменевтический реализм" и т.д. и т.п. Хорошо известно и то, что людей, занимающихся естественными науками, нередко раздражает стремление философов проанализировать их занятия, поскольку особой пользы от этого никто еще не видел, а вред от попыток жесткого очерчивания научных концепций может быть вполне ощутимым. Например, нобелевский лауреат Стивен Уайнберг одну из глав в своей книге "Мечты об окончательной теории" так и назвал - "Против философов". Другое не менее известное светило, Мюррей Гелл-Манн, поясняет нелестное мнение своих коллег о "любомудрии" следующим образом: "Философия мутит воду и затуманивает важнейшую задачу теоретической физики - отыскивать согласованную работоспособную структуру". Наличие же у физика четкой философской позиции, по мнению Гелл-Манна, может стать причиной "отвержения какой-нибудь хорошей идеи". Даже Альберт Эйнштейн, уважительно относившийся к философским аспектам научной деятельности, однажды написал, что, с точки зрения философа, ученый-физик - это "беспринципный оппортунист", поскольку физик готов стать "реалистом, когда пытается описать мир в независимости от актов восприятия; идеалистом, когда взирает на концепции и теории (не выводимые логически из опыта) как на изобретательность человеческого духа, и позитивистом, когда считает свои теории обоснованными лишь в пределах логической согласованности с ощущениями своих органов чувств"… Сегодня, пожалуй, никто не возьмется дать строгое определение "реализму". На протяжении XX века научные теории все больше концентрировались на прагматическом предсказании и управлении, а не на достоверном описании или объяснении природы. Горький опыт научил физиков, что доминирующие теории могут изменяться самым непредсказуемым образом, а прошлые фундаментальные достижения науки нередко приходится отвергать как ложные. А значит, в любой момент надо быть готовым, что и на смену сегодняшней науке придет радикально новая, более плодотворная концепция. Например, для физиков реальность не могла оставаться прежней после "второй научной революции" (примерно 1925 год), когда микромир перешел под власть квантовой механики. Согласно квантово-механической теории, служащей ныне фундаментом для множества современных технологий, энергия имеет дискретную природу, частицы могут быть волнами, объект может одновременно находиться в нескольких местах, пока кто-то не попытается измерить его параметры… Эти факты известны давно, тем не менее наука так и не смогла дать им удовлетворительных объяснений, доступных пониманию на уровне "бытового реализма". Другим поводом для серьезных беспокойств остается по-прежнему неразрешенная несовместность двух важнейших физических теорий - квантовой теории, описывающей микромир, и общей теории относительности, описывающей макромир в терминах гравитации. В сложностях с определением реализма немаловажен еще и такой аспект: очень многое из того, чем сегодня занимаются физики, является продуктом их же собственных теорий. По замечанию, сделанному когда-то Робертом Оппенгеймером, специфика исследований заставила ученых "пересмотреть соотношение между наукой и здравым смыслом, заставила нас признать: хоть мы и говорим на каком-то определенном языке и используем определенные концепции, отсюда вовсе не обязательно следует, что в реальном мире имеется что-то, этим вещам соответствующее". Наконец, нельзя исключать, что новейшая, наиболее плодотворная концепция реальности не станет отменять предшествующие, противоречащие друг другу теории, а органично из них прорастет, объединив лучшее, освободившись от ложного и попутно объяснив многое из того, что прежде было совершенно непостижимо, а потому просто игнорировалось. Вехи холономной парадигмы Может статься, что наши потомки важнейшим достижением XX века, открывшим человечеству новый взгляд на мир, будут считать вовсе не квантовую механику или теорию относительности, а нечто совершенно иное - голографию. Пионером же "третьей научной революции" окажется не слишком известный вне физического мира Дэвид Бом, соратник Оппенгеймера и Эйнштейна, воспользовавшийся идеями голографии для интерпретации окружающей действительности и заложивший основы так называемой холономной парадигмы.
Пояснить эту идею помогает следующая иллюстрация. Представим себе, говорит Бом, аквариум с рыбкой. Допустим, по какой-то причине мы не можем разглядывать эту систему непосредственно, а имеем лишь возможность смотреть в два телеэкрана на аквариум, снимаемый спереди и сбоку. Глядя на экраны, легко заключить, что две плавающие там рыбки - это отдельные объекты. Но присмотревшись, можно выяснить, что между двумя рыбками на двух экранах существует какая-то отчетливая взаимосвязь. Если одна рыбка меняет положение, то одновременно приходит в движение и другая. Причем всегда оказывается, что если одну видно "анфас", то другую - непременно "в профиль". И если не знать, что снимается один и тот же аквариум, внимательный наблюдатель скорее заключит, что рыбки неведомым образом мгновенно сообщаются друг с другом, нежели припишет это случайности.
Теории Дэвида Бома были изложены им в ряде статей и в книге "Целостность и имплицитный порядок" (David Bohm, "Wholeness and the Implicate Order", 1980). В тех же 1980-х годах уровень развития техники наконец-то позволил экспериментально подтвердить парадоксальный феномен ЭПР, по иронии судьбы специально сформулированный в 1930-е годы Эйнштейном и его коллегами для демонстрации изъянов в построениях квантовой теории. Успешные эксперименты придали теории Бома солидности. Фрактальная геометрия: голографический принцип Открытая примерно в те же годы Бенуа Мандельбротом фрактальная геометрия, описывающая упорядоченный хаос природы, также демонстрировала "голографический" принцип бесконечного вложения самоподобных структур друг в друга на основе весьма простых математических соотношений.
Некоторый математический фундамент удалось заложить в свою теорию и Дэвиду Бому, однако необъятность задачи, преклонные годы и переключение интересов на вопросы соотношения физики и сознания помешали ученому перевести свою концепцию голографической вселенной из качественного состояния в количественное. Независимо от Бома, к идеям холономной парадигмы пришел в 1970-е годы нейрофизиолог из Стэнфордского университета Карл Прибрам, работающий в области исследований мозга. За несколько десятилетий экспериментальной работы в нейрохирургии и электрофизиологии Прибрам завоевал репутацию одного из ведущих специалистов в своей области. Главным же интересом его исследований была загадка памяти мозга, непостижимым образом хранящего и обрабатывающего воспоминания. Еще учитель Прибрама Карл Лешли в бесчисленных экспериментах на крысах продемонстрировал в 1920-е годы безуспешность попыток локализации памяти. Какой бы участок мозга крысы ни удалялся, не удавалось добиться исчезновения условных рефлексов, выработанных у животного до операции. Таким образом, Лешли открыл, что воспоминания хранятся во всех частях коры, а их интенсивность зависит от общего числа активных клеток. Когда же в 1960-е годы Карл Прибрам познакомился с принципами голографии, ему стало ясно, что найдено объяснение, которое так долго искали нейрофизиологи.
В многочисленных статьях и книге "Языки мозга" (Karl Pribram, "Languages of the Brain") ученый демонстрирует, что модель мозга, основанная на голографических принципах, может объяснить многие из кажущихся таинственными свойств мозга - огромный объем и дистрибутивность памяти, способность сенсорных систем к воображению, проекцию образов из области памяти, некоторые важные аспекты ассоциативного воспоминания. В процессе развития "холономной теории мозга" и выявления "Фурье-подобных" преобразований спектра сигналов в мозге Прибраму удалось сформировать несколько основополагающих, экспериментально обоснованных концепций, среди которых можно отметить такие:
Теория Карла Прибрама с воодушевлением воспринята многими энтузиастами "альтернативной" науки. Имеются интересные, подтверждающие концепцию исследования специалистов в области информатики, однако пока что холономную модель мозга ни в коей мере нельзя считать общепризнанной в области нейрофизиологии. Здесь экспериментаторы предпочитают накапливать данные независимо от какой-либо глобальной теории, а построение модели мозга/сознания оставляют будущим поколениям. По этой же причине неординарные работы Прибрама по сию пору обычно игнорируются авторами базовых учебников нейрофизиологии. Что, конечно, достойно сожаления, хотя и вполне объяснимо с точки зрения здорового научного консерватизма. Еще одна интереснейшая область в советской "пограничной" науке - метод высоковольтной фотографии, открытый еще в XIX веке, но наиболее глубоко и систематически исследованный в 1930-е годы супругами Семеном и Валентиной Кирлиан. Фотографируемый объект помещается вместе с фотопленкой между двумя пластинами электродов, на которые в течение короткого времени подается высокочастотный ток, вызывающий коронный разряд. Обычно метод упоминают в связи с тем, что он позволяет фиксировать переливающуюся разными цветами "ауру" вокруг живой материи, однако самое значительное открытие в этой области получило название "фантом листа". Суть его в том, что после удаления части листа растения нередко удается сфотографировать его корону, имеющую такую форму и структуру, будто лист по-прежнему цел. Это открытие уже давно навело исследователей на мысль, что излучение энергии вокруг листа образует нечто вроде голограммы, которая и играет роль того самого морфогенетического поля, организующего вещество. Физический мэйнстрим, по сути дела, проигнорировал голографическую модель вселенной Дэвида Бома. Начиная примерно с 1984 года, основные надежды науки на финальную теорию великого объединения все больше связываются с теорией струн. По степени абстрактности она чрезвычайно далека от повседневной жизни, однако способна предложить весьма элегантные математические соотношения, формально снимающие многие из противоречий и сулящие в конечном счете объединить квантовую теорию с гравитацией. Фундаментом для голографического принципа стали результаты Бекенштайна: вся информация, содержащаяся в некоторой области пространства, может быть представлена как некая "голограмма" - то есть теория, помещающаяся на границе этой области. Грубо говоря, абсолютно все, что содержится, скажем, в комнате, можно описать на стенах, полу и потолке этой комнаты. Второе же базовое утверждение голографического принципа гласит, что теория на границе исследуемой области пространства должна содержать не более одной степени свободы на каждую зону Планка. Зоны Планка считаются элементарными "зернами" пространства нашей вселенной, длина каждой стороны такой зоны (так называемая длина Планка) равна примерно 10-33 сантиметра. Таким образом, согласно голографической теории, количество степеней свободы для некоторой ограниченной области пространства растет пропорционально площади поверхности, а не объему…
Поначалу идеи ’т Хоофта разделялись лишь небольшой группой единомышленников, "экстравагантными" методами изучавших квантовые черные дыры. Но затем, по мере развития теории струн и с появлением понятия мембран различной размерности, предоставивших инструментарий для изучения черных дыр, оказалось, что концепции голографического принципа чрезвычайно удобны и применимы к пространству-времени любой размерности. Никто не может объяснить, почему этот принцип работает, но идея "голограммы" постепенно становится одним из главных инструментов в поисках способа объединения гравитации и квантовой механики.
В древнеиндийской ведической традиции существует поэтический образ ожерелья главного бога Индры. Как записано в "Аватамсака-сутре": "В небесах Индры есть, говорят, нить жемчуга, подобранная так, что если глянешь в одну жемчужину, то увидишь все остальные, отраженные в ней. И точно так же каждая вещь в мире не есть просто она сама, а заключает в себе все другие вещи и на самом деле есть все остальное". По материалам сайта "Лаборатория пространств" Переходы: Важная информация |
|
2002 - 2017 © с а й т О л ь г и Л е в и н о й |